New Relation between lonic Radii, Bond Length, and Bond Strength

JACEK ZIÓモKOWSKI

Institute of Catalysis and Surface Chemistry, Polish Academy of Sciences, 30-239 Kraków, ul. Niezapominajek, Poland

Received October 7, 1983; in final form August 24, 1984

Based on the table of the effective ionic radii of R. D. Shannon (Acta Crystallogr. Sect. A 32, 751, 1976), the linear relation of the cationic radii on the coordination number k has been observed:

$$
r_{\mathrm{k}}=r_{0}+d k-\frac{0.0236 k}{z}
$$

where r_{0} is the radius of free cation, z its valence, and $d=0.1177-0.0081 z-0.0347 r_{0}-0.0050 z r_{0}$. The analogous relation for O^{2-} anion has been found to be $r_{\mathrm{k}^{\prime}}^{\prime}=r_{0}^{\prime}+a^{\prime} k^{\prime}=1.328+0.0118 k^{\prime}$. By adding r_{k} and $r_{\mathbf{k}^{\prime}}^{\prime}$ corresponding to the same bond strength new dependence between bond length R and bond strength s has been established for cation-oxygen bonds:

$$
s=\frac{d z}{R-R_{0}}
$$

where $R_{0}=r_{0}+r_{0}^{\prime}$. The necessity to choose a standard state for ionic radii and for bond strength is pointed out and argued. Structures of simple oxides at room temperature and at normal pressure are chosen as standard state at which the sum of the strengths of bonds around the cation is assumed to be exactly equal to its z. Standard radii of free ions r_{0} are determined for about 230 ions and are listed. As in Shannon's table some ionic radii were found to be negative. Physical sense can be hardly attributed to this finding. To avoid the negative radii a new scale of absolute ionic radii ρ_{0} is proposed, based on assumption that $\rho_{0}\left(\mathrm{H}^{1+}\right)=0$ instead of $r_{0}\left(\mathrm{H}^{1+}\right)=-h=-0.499$ (the size of the proton is known to be of the order of $10^{-5} \AA$, i.e., much less than the accuracy of determination of ionic radii). Consequently ρ_{0} for all cations is assumed to be $\rho_{0}=r_{0}+h$ and for anions $\rho_{0}^{\prime}=r_{0}^{\prime}-h$ (e.g., $\left.\rho_{0}^{\prime}\left(\mathrm{O}^{2-}\right)=0.829 \AA\right)$. Bond-length-bond-strength relationship expressed by the equation indicated above is rationalized in terms of the new proposed electrostatic hover model of crystal structure. In this model ions are of constant size (r_{0} or ρ_{0}), they do not touch each other, but they are maintained at distances $L=R-R_{0}$ by the electrostatic forces. This remains in agreement with the suggested (J. Ziółkowski, J. Catal. 84, 317, (1983)) linear relation between bond strength and bond energy $E=J s$ which will be proved in the forthcoming paper (J. Ziólkowski and L. Dziembaj, J. Solid State Chem. 57, 291 (1985)). © 1985 Academic Press, Inc.

Introduction

The concept of the electrostatic bond strength, s, was defined by Pauling (1) as the valence of cation z divided by its coordination k :

$$
\begin{equation*}
s=\frac{z}{k} \tag{1}
\end{equation*}
$$

As follows from the definition

$$
\begin{equation*}
\sum_{1}^{k} s_{i}=z \tag{2}
\end{equation*}
$$

Pauling stated that in a stable ionic structure also the valence of each anion z^{\prime} (all parameters concerning anion will be indexed throughout this paper with "prime") is exactly (or nearly) equal to the sum of the strengths of the bonds to it from the adjacent cations:

$$
\begin{equation*}
\sum_{i}^{k^{\prime}} s_{i}=z^{\prime} \tag{3}
\end{equation*}
$$

Deviations from Pauling's rule were usually interpreted by stating that bond strength must depend on the anion-cation distance R. As reviewed by Brown (2) various empirical methods for calculating cat-ion-oxygen bond strength as a function of bond length have been proposed so far, two of which having become widely applicable and accepted; the inverse power function

$$
\begin{equation*}
s=\left(\frac{R}{R_{1}}\right)^{-N} \tag{4}
\end{equation*}
$$

and the exponential function

$$
\begin{equation*}
s=\exp \left(\frac{R-R_{1}}{B}\right), \tag{5}
\end{equation*}
$$

where s is the bond strength expressed in valence units (vu) and R is the bond length expressed in Ångstroms. R_{1}, N, and B are empirical parameters determined for about 120 cations (2-6). The concept of the bond strength can also be used in the situation where the binding is primarily covalent (3) and thus the terms "cation" and "anion" are still used for convenience only.

Although bond strengths calculated with Eqs. (4) or (5) have a number of practical applications in the analysis of crystal structures (2), it should be stressed that the form of these equations has never been rationalized. Since the bond strength has an electrostatic origin one could expect that $s-R$ dependence should rather have a coulombic form

$$
\begin{equation*}
s=\frac{\mathrm{const}}{R} \tag{6}
\end{equation*}
$$

with the bond strength proportional to the bond energy

$$
\begin{equation*}
E=J s \tag{7}
\end{equation*}
$$

The $E-s$ relationship expressed by Eq. (7) has been demonstrated for the first time for $\mathrm{C}-\mathrm{O}$ bonds in CO_{2} and in various organic molecules (7). Its validity for inorganic solids will be examined and confirmed in a forthcoming paper (8), aiming at formulation of a general bond-length-bond-strength-bond-energy concept.

However, Eqs. (6) and (7) on one hand and Eqs. (4) and (5) on the other, do not combine well. For example, by combining Eqs. (4) and (7) we have

$$
\begin{equation*}
E \sim \frac{1}{R^{N}} \tag{8}
\end{equation*}
$$

with N varying between 2.2 and 9 and being $4.5 \leq N \leq 7$ for the majority of studied cations (2,4). This is a rather paradoxical conclusion because such high powers are usually considered as characteristic of interactions resulting from various types of dispersion forces and not from electrostatic interactions, the predominating component of the lattice energy.

On the other hand, Eq. (4) applied to structures with equal lengths of all bonds and thus combined with Eq. (1) may be easily transformed to

$$
\begin{equation*}
R=R_{1}\left(\frac{k}{z}\right)^{1 / N} \tag{9}
\end{equation*}
$$

which makes it possible to determine the dependence of the cation-oxygen distance on the coordination number. However, R_{-} k dependences calculated in such a way frequently disagree with those calculated from effective ionic radii $(9,10)$. Some examples are shown in Fig. 1.

In view of the above comments it seems that Eqs. (4) and (5), although convenient are (in view of their form) only an approximation in which the physical sense has

Fig. 1. Bond lengths of some $\mathrm{Me}^{2+}-\mathrm{O}$ bonds at various coordinations resulting from the bond-length-bond-strength relationship (Eq. (4), lines) and from the table of the effective ionic radii of Shannon and Prewitt (black points) or of Shannon (open points). The latter are calculated by adding the ionic radii of cation and O^{2-} at the same coordination. Lacking radii of O^{2-} were determined by interpolation or extrapolation (cf. Fig. 2).
been lost. Therefore searching for a more rationalized $s-R$ function seems to be substantiated.

Let us note moreover that once it has been decided that s must depend on R, the rule expressed by Eqs. (2) and (3) cannot be valid in general. If a given crystal is heated, the bond lengths increase, their strengths decrease and Σs_{i} becomes smaller and smaller. The opposite effect is expected if two simple oxides react to form a thermodynamically more stable mixed oxide or salt. It therefore seems obvious that a choice of a standard state for s (and so for ionic radii, being the components of the bond length) is necessary.

The above-mentioned problems will be
discussed in detail in this paper. A new $s-R$ equation will be proposed. It will be indicated how to make consistent the parameters for calculating cation-oxygen bond strength and the values of ionic radii. $E-s-$ R relationship will be treated in the forthcoming paper (8). In searching the $s-R$ function two approaches will be considered. They do not differ essentially in their general idea, but in some details of mathematical description. The second approach is considered to reflect better the nature of the discussed problems.

First Approach to the $\boldsymbol{s}-\boldsymbol{R}$ Relationship

(I) Dependence of Ionic Radius on Coordination

The present considerations use the effective ionic radii compiled by Shannon (10). Those radii based upon the empirical bond-length-bond-strength relationship (Eq. (4)) which was questioned in the Introduction, are eliminated from the considered set. Consequently the radii determined by Shannon and Prewitt (9) are used for $\mathbf{A g}^{1+}$, $\mathrm{Ba}^{2+}, \mathrm{Bi}^{3+}, \mathrm{Ca}^{2+}, \mathrm{Cd}^{2+}, \mathrm{Cs}^{1+}, \mathrm{La}^{3+}, \mathrm{Pb}^{2+}$, and Sr^{2+}.

The tables $(9,10)$ contain 58 cations (mentioned in Fig. 3) for which the effective ionic radii r_{k} were determined for at least three different coordinations. It appears that for all these ions a linear $r_{k}-k$ dependence is observed:

$$
\begin{equation*}
r_{k}=r_{0}+a k \tag{10}
\end{equation*}
$$

where r_{0} is the extrapolated radius of the free ion ($k=0$). Selected examples are shown in Fig. 2. The straight lines were determined with the least-squares method and the correlation coefficients c were greater than 0.999 for 26 of the cations, 0.995 for 18 cations, 0.990 for 9 cations, 0.98 for 4 cations, and equal to 0.956 for one cation $\left(\mathrm{Hg}^{2+}\right)$. Equation (10) is also valid for $\mathrm{O}^{2-}(c$ $=0.993$):

Fig. 2. Selected examples of the linear dependence of the effective ionic radius on coordination number.

$$
\begin{equation*}
r_{k^{\prime}}^{\prime}=r_{0}^{\prime}+a^{\prime} k^{\prime}=1.328+0.0118 k^{\prime} \tag{11}
\end{equation*}
$$

and for $\mathrm{F}^{1-}(c=0.995)$

$$
\begin{equation*}
r_{k^{\prime}}^{\prime}=1.265+0.0110 k^{\prime} \tag{12}
\end{equation*}
$$

In this paper all numerical data are given with exaggerated accuracy to avoid the error of rounding in further calculations; radii and lengths are expressed in Ångstroms.

As the 60 ions indicated above are of various valences and electronic structure and are dispersed over the entire periodic table it seems that they form a representative set. Consequently one can postulate that Eq. (10) is valid for all ions of all the elements.

As shown in Fig. 3 the parameters r_{0} and a in Eq. (10) are not independent, but they fulfill the linear relation

$$
\begin{equation*}
a=a_{0}-b r_{0}=0.0811-0.0379 r_{0} . \tag{13}
\end{equation*}
$$

Combining Eqs. (10) and (13) we receive

$$
\begin{align*}
r_{k}=(1 & -k b) r_{0}+a_{0} k \\
& =(1-0.0379 k) r_{0}+0.0811 k \tag{14}
\end{align*}
$$

From Eq. (14) we see that r_{k} for a given cation depends on only one parameter r_{0} characteristic of this ion.

It is true that the correlation for Eq. (13) is rather poor (0.889) but let us remark that r_{k} is usually strongly dependent on r_{0} and only slightly on a. Thus even a large absolute error of a results in a small error of r_{k}. To evaluate the validity and precision of the generalized $r_{k}-k$ dependence expressed by Eq. (14) two subsidiary dotted lines are drawn in Fig. 3 at distances ± 0.01 from the solid line determined with the least-squares method. If a point in Fig. 3 for a given ion lay on one of the auxiliary lines, its r_{k} at the most common coordination $k=6$, resulting from Eq. (14), was larger or smaller by 0.06 \AA from that $\left(r_{6, S}\right)$ determined by Shannon (10). As results from Fig. 3, the differences ($r_{k}-r_{k, S}$) are much smaller for the majority of considered cations and comparable with an error of empirical determination of ionic radii. There are only three ions which do not fit the linear $a-r_{0}$ relationship (Mo^{6+}, $\mathrm{Cr}^{5+}, \mathrm{Ta}^{5+}$). This may be due to the fact that these ions form usually strongly distorted structures, which markedly influences the precision of r_{k} determination (10). It will be shown further, in favor of the above supposition, that Mo^{6+} ion "forced" to lie on the $a-r_{0}$ line (or on the $d-r_{0}$ line in terms of the second approach) gains a quite good $s-R$ dependence, especially in terms of the second approach (cf. Fig. 9 and Table III).

(II) Relation between Bond Length and

Bond Strength

Making use of Eq. (10) one can calculate the bond length R between a cation of valence z and O^{2-} anion of $z^{\prime}=2$, corresponding to a chosen bond strength ${ }^{1}$:

[^0]

Fig. 3. Dependence between parameters a and r_{0} from Eq. (13) (first approach). Open points at about $r_{0}=0.6$ and $a=0.06$ represent the overlapping data for $\mathrm{Ca}^{2+}, \mathrm{Cd}^{2+}, \mathrm{Dy}^{3+}, \mathrm{Er}^{3+}, \mathrm{Eu}^{3+}, \mathrm{Ho}^{3+}, \mathrm{Sm}^{3+}$, and Tb^{3+}. Solid line is determined with the least-squares method. Auxiliary dotted lines serve to evaluate the precision of the $a-r_{0}$ dependence (as discussed in text).

$$
\begin{equation*}
s=\frac{z}{k}=\frac{2}{k^{\prime}} \tag{15}
\end{equation*}
$$

For this purpose one has to sum r_{k} corresponding to $k=z / s$ and $r_{k^{\prime}}^{\prime}$ corresponding to $k^{\prime}=2 / s$:

$$
\begin{equation*}
R=r_{0}+\frac{z a}{s}+r_{0}^{\prime} \frac{2 a^{\prime}}{s} \tag{16}
\end{equation*}
$$

Transforming Eq. (16) one arrives at

$$
\begin{equation*}
s=\frac{z a+2 a^{\prime}}{R-r_{0}-r_{0}^{\prime}} \tag{17}
\end{equation*}
$$

Let us introduce

$$
\begin{gather*}
R_{0}=r_{0}+r_{0}^{\prime} \tag{18}\\
R^{\mathbf{1}}=r_{z}^{1}+r_{2}^{\prime 1} \tag{19}
\end{gather*}
$$

where R^{1} is the bond length expected for a bond of unit valence, which obviously takes place if $k=z$ and $k^{\prime}=2$. As is evident from Eqs. (17), (18), and (19):

$$
\begin{equation*}
s=\frac{R^{1}-R_{0}}{R-R_{0}} \tag{20}
\end{equation*}
$$

Equation (20) may be considered as a general dependence between the bond strength and the bond length alternative to Eqs. (4) and (5) and drawn upon only one well-argued assumption of the linearity of the $r_{k}-k$ dependence. There are two parameters in this equation (R_{0} and R^{1}) which could be fitted for each ion in a manner analogous to that applied in earlier works $(3,4)$.

If, however, we make use of Eqs. (13) and (14), Eqs. (17) and (20) transform to

$$
\begin{align*}
s= & \frac{a z+2 a^{\prime}}{R-R_{0}}=\frac{z a_{0}-z b r_{0}+2 a^{\prime}}{R-r_{0}-r_{0}^{\prime}} \\
& =\frac{0.0811 z-0.0379 z r_{0}+0.0236}{R-r_{0}-1.328}, \tag{21}
\end{align*}
$$

where there is only one parameter r_{0} to be fitted. As r_{0} is also the only parameter determining r_{k} values, $r_{k}-k$ (Eq. (14)) and $s-R$ (Eq. (21)) relationships can be fitted simultaneously.

From Eqs. (20) and (21) we also see that the bond strength is proportional to the re-

TABLE I
Standard Radil of Free Ions (r_{0}), Absolute Ionic Radii (ρ_{0}), and Standad Ionic Radii at k-fold Coordination r_{k} Compared with Effective Ionic Radil $r_{k, \text { s }}$ Determined by Shannon (10)

Ion ${ }^{\text {a }}$	First approach r_{0}	Second approach			$r_{k, \mathrm{~s}}$	Remarks ${ }^{\text {c }}$
		r_{0}	ρ_{0}	$r_{k}{ }^{\text {b }}$		
Ac^{3+}	0.820	0.864	1.363	\rightarrow	$1.12{ }_{6}$	E 6
$\mathbf{A g}^{\mathbf{1 +}}$	0.548	0.540	1.039	0.9276	$1.15{ }_{6}$	D (11) c
$\mathbf{A g ~}^{\mathbf{2}}$	0.548	0.530	1.029	$0.926{ }_{6}$	$0.94{ }_{6}$	E 4
$\mathrm{Ag}^{\mathbf{3 +}}$	0.341	0.337	0.836	\rightarrow	$0.75{ }_{6}$	E 6
Al^{3+}	0.061	0.030	0.529	0.534_{6}	0.535_{6}	D (11) k
Am^{2+}	0.798	0.772	1.271	1.213_{8}	$1.26{ }_{8}$	D (11) n
Am^{3+}	0.632	0.658	1.157	\rightarrow	0.975_{6}	E 6
Am^{4+}	0.436	0.565	1.064	0.856_{6}	0.856	D (11) f
As^{3+}	0.121	0.095	0.594	\rightarrow	$0.58{ }_{6}$	E 6
$\mathrm{As}^{\text {s+ }}$	0.012	0.059	0.558	0.473_{6}	$0.46{ }_{6}$	E 4
At^{7+}	0.173	0.471	0.970		$0.62{ }_{6}$	E 6
Au^{1+}	1.144	1.121	1.620	\rightarrow	1.376	E 6
Au^{3+}	0.470	0.479	0.978	\rightarrow	0.856	E 6
Au^{5+}	0.108	0.210	0.709	\rightarrow	0.576	E 6
B^{3+}	-0.211	-0.238	0.261	0.151_{4}	$0.11{ }_{4}$	D (12)
Ba^{2+}	1.133	1.126	1.625	1.362_{6}	$1.35{ }_{6}$	D (11) n
Be^{2+}	-0.060	-0.104	0.395	0.273_{4}	$0.27{ }_{4}$	D (13)
Bi^{3+}	0.703	0.736	1.235	1.128_{8}	1.178	E 6
Bi^{5+}	0.359	0.506	1.005	\rightarrow	$0.76{ }_{6}$	E 6
Bk^{3+}	0.613	0.636	1.135	\rightarrow	$0.96{ }_{6}$	E 6
Bk^{4+}	0.404	0.524	1.023	$0.828{ }_{6}$	0.836	E 8
Br^{1-}	1.892	1.892	1.393	\rightarrow	$1.96{ }_{6}$	E 6
Br^{3+}	0.313	0.309	0.808	\rightarrow	$0.59{ }_{4}$	E 4
Br^{5+}	0.075	0.112	0.611	\rightarrow	$0.31{ }_{3}$	E 3
Br^{7+}	-0.087	0.027	0.526	0.3616	0.396	E 4
C^{2+}	-0.304	-0.316	0.181	-0.212_{2}	-	D (14) m
C^{4+}	-0.368	-0.378	0.121	-0.078	$-0.08{ }_{3}$	D (14) m
Ca^{2+}	0.673	0.640	1.139	1.1288	$1.12{ }_{8}$	$D(11) n$
Cd^{2+}	0.599	0.562	1.061	0.949_{6}	$0.95{ }_{6}$	D (11) n
Ce^{3+}	0.709	0.762	1.261	1.048_{6}	$1.01{ }_{6}$	E 8
Ce^{4+}	0.457	0.591	1.090	0.873_{6}	0.876	D (11) f
Cf ${ }^{\text {+ }}$	0.600	0.622	1.121	\rightarrow	$0.95{ }_{6}$	E 6
Cf ${ }^{4+}$	0.433	0.512	1.011	0.923_{8}	0.928	E 6
Cl^{1-}	1.742	1.742	1.243	\rightarrow	$1.81{ }_{6}$	E 6
Cl^{5+}	-0.139	-0.119	0.380	\rightarrow	$0.12{ }^{\text {a }}$	E 3
Cl^{7+}	-0.288	-0.209	0.290	0.224	0.276	E 4
Cm^{3+}	0.626	0.650	1.149	\rightarrow	0.976	E 6
Cm^{4+}	0.433	0.561	1.061	0.853_{6}	$0.85{ }_{6}$	D (11) f
$\mathrm{Co}^{2+} \mathrm{HS}$	0.321	0.268	0.767	0.734_{6}	0.745_{6}	D (11) n
$\mathrm{Co}^{2+} \mathrm{LS}$	0.212	0.153	0.652	\rightarrow	0.656	E 6
$\mathrm{Co}^{3+} \mathrm{HS}$	0.159	0.138	0.637	\rightarrow	0.616	E 6
$\mathrm{Co}^{3+} \mathrm{LS}$	0.076	0.045	0.544	\rightarrow	0.545_{6}	E 6
$\mathrm{Co}^{++} \mathrm{HS}$	0.056	0.079	0.578	\rightarrow	0.536	E 6
$\mathrm{Cr}^{2+} \mathrm{HS}$	0.406	0.358	0.857	\rightarrow	$0.80{ }_{6}$	E 6
$\mathrm{Cr}^{2+} \mathrm{LS}$	0.315	0.262	0.761	\rightarrow	$0.73{ }_{6}$	E 6
Cr^{3+}	0.171	0.150	0.649	$0.618{ }_{6}$	0.615_{6}	D (11) k
Cr^{4+}	0.071	0.096	0.595	0.541_{6}	0.556	D (11) r

TABLE I-Continued

$10{ }^{\text {a }}$	First approach r_{0}	Second approach			$r_{\text {k. }}$	Remarks ${ }^{\text {c }}$
		r_{0}	ρ_{0}	$r_{k}{ }^{\text {b }}$		
Cr^{5+}	0.024	0.073	0.572	0.482_{6}	$0.49{ }_{6}$	E 4
Cr^{6+}	-0.076	-0.001	0.498	\rightarrow	$0.26{ }_{4}$	E 4
Cs^{1+}	1.374	1.366	1.865	1.557_{6}	1.676	D (15)
Cu^{1+}	0.337	0.328	0.827	0.766_{6}	0.776	D (11) c
Cu^{2+}	0.255	0.221	0.720	0.7006	$0.73{ }_{6}$	D (11)
Cu^{3+}	0.069	0.038	0.537	\rightarrow	$0.54{ }_{6}$	E 6
D^{1+}	-0.284	-0.296	0.203	\rightarrow	-0.10_{2}	E 2
Dy ${ }^{+}$	0.755	0.727	1.226	1.184_{8}	1.198	E 6
Dy ${ }^{3+}$	0.553	0.571	1.070	0.914_{6}	0.912_{6}	D (16) b
Er^{3+}	0.519	0.533	1.032	0.887_{6}	0.890_{6}	D (17) b
Eu^{2+}	0.889	0.868	1.367	1.173_{6}	1.176	D (11) n
Eu^{3+}	0.596	0.618	1.117	1.056_{8}	1.066_{8}	E 6
F^{1-}	1.264	1.264	0.765	1.330_{6}	$1.33{ }_{6}$	Eq. (12)
F^{7+}	-0.526	-0.457	0.042	\rightarrow	$0.08{ }_{6}$	E 6
$\mathrm{Fe}^{2+} \mathrm{HS}$	0.338	0.286	0.785	0.747_{6}	0.780_{6}	D (11) n
$\mathrm{Fe}^{2+} \mathrm{LS}$	0.160	0.098	0.597	\rightarrow	0.616	E 6
$\mathrm{Fe}^{3+} \mathrm{HS}$	0.145	0.122	0.621	0.6006	0.645_{6}	D (11) k
$\mathrm{Fe}^{3+} \mathbf{L S}$	0.082	0.052	0.551	\rightarrow	$0.55{ }_{6}$	E 6
Fe^{4+}	0.127	0.161	0.660	\rightarrow	0.5856	E 6
Fe^{6+}	-0.088	-0.014	0.485	\rightarrow	$0.25{ }_{4}$	E 4
Fr^{1+}	1.700	1.685	2.184	\rightarrow	$1.80{ }_{6}$	E 6
Ga^{3+}	0.170	0.156	0.655	0.623_{6}	0.620_{6}	D (18)
Gd^{3+}	0.584	0.605	1.104	1.048_{8}	1.053_{8}	E 6
Ge^{2+}	0.315	0.262	0.761	\rightarrow	$0.73{ }_{6}$	E 6
Ge^{4+}	0.038	0.059	0.558	0.516_{6}	0.530_{6}	D (11) r
$\mathrm{H}^{\mathbf{+}}$	-0.493	-0.499	0.000	-0.393_{1}	$-0.38{ }_{1}$	D (14) m
Hf ${ }^{+}$	0.274	0.364	0.863	0.721_{6}	$0.71{ }_{6}$	D (11) f
Hg ${ }^{\text {+ }}$	0.910	0.885	1.384	\rightarrow	1.196	E 6
Hg^{2+}	0.690	0.659	1.158	1.141_{8}	$1.14{ }_{8}$	E 6
Ho^{3+}	0.529	0.545	1.044	1.013_{8}	1.015_{8}	D (17) b
I^{1-}	2.132	2.132	1.633	\rightarrow	$2.20{ }_{6}$	E 6
$\mathrm{I}^{\text {S }}$	0.600	0.802	1.301	\rightarrow	$0.95{ }_{6}$	E 6
T^{7+}	0.056	0.316	0.815	0.4584	0.424	E 6
In^{3+}	0.411	0.415	0.914	0.804_{6}	0.800_{6}	D (17) b
Ir^{3+}	0.250	0.237	0.736	\rightarrow	$0.68{ }_{6}$	E 6
Ir^{4+}	0.179	0.221	0.720	\rightarrow	0.625_{6}	E 6
$\mathrm{Ir}^{\text {s+ }}$	0.108	0.210	0.709	\rightarrow	0.576	E 6
\mathbf{K}^{1+}	1.226	1.213	1.712	1.440_{6}	$1.38{ }_{6}$	D (11) f
La^{3+}	0.706	0.739	1.238	1.129_{8}	1.168	E 6
Li^{1+}	0.298	0.278	0.777	$0.578{ }_{4}$	0.590_{4}	D (11) f
Lu^{3+}	0.485	0.495	0.994	0.982_{8}	$0.977{ }_{8}$	E 6
$\mathrm{Mg}^{\mathbf{2 +}}$	0.286	0.231	0.730	0.707_{6}	0.720_{6}	D (11) n
$\mathrm{Mn}^{2+} \mathrm{HS}$	0.436	0.589	0.888	0.823_{6}	$0.830{ }_{6}$	D (11) n
$\mathrm{Mn}^{2+} \mathrm{LS}$	0.237	0.180	0.679	\rightarrow	0.676	E 6
$\mathrm{Mn}^{3+} \mathrm{HS}$	0.328	0.323	0.822	0.740_{6}	0.645_{6}	D (17) b
$\mathrm{Mn}^{3+} \mathrm{LS}$	0.121	0.095	0.594	\rightarrow	$0.58{ }_{6}$	E 6
Mn^{4+}	0.047	0.069	0.568	0.523_{6}	0.530_{6}	D (11) r
Mn^{5+}	0.007	0.053	0.552	\rightarrow	0.33_{4}	E 4
Mn^{6+}	-0.082	-0.007	0.492	\rightarrow	0.255_{4}	E 4

TABLE I-Continued

Ion ${ }^{\text {a }}$		Second approach			$r_{\text {k. }}$	Remarks ${ }^{\text {c }}$
	r_{0}	r_{0}	ρ_{0}	$r_{k}{ }^{\text {b }}$		
Mn^{7+}	-0.088	0.026	0.525	\rightarrow	$0.25{ }_{4}$	E 4
Mo ${ }^{++}$	0.263	0.252	0.751	\rightarrow	0.696	E 6
Mo ${ }^{4+}$	0.204	0.250	0.749	0.644_{6}	0.650_{6}	D (19)
Mo ${ }^{\text {+ }}$	0.160	0.223	0.722	0.578_{6}	$0.61{ }_{6}$	E 4
Mo^{6+}	0.054	0.175	0.674	$0.498{ }_{6}$	0.596	D (20)
N^{3-}	1.414	1.414	0.915	\rightarrow	$1.46{ }_{4}$	E 4
N^{3+}	-0.423	-0.504	-0.005	\rightarrow	$0.16{ }_{6}$	E 6
N^{4+}	-0.340	-0.349	0.150	0.2026	-	D (14) m
$\mathrm{N}^{\text {+ }}$	-0.490	-0.398	0.107	\rightarrow	-0.104_{3}	E 3
Na^{1+}	0.773	0.756	1.255	1.092_{6}	1.02_{6}	D (11) f
Nb^{2+}	0.285	0.230	0.729	0.706_{6}	-	D (11) n
Nb^{3+}	0.302	0.294	0.793	\rightarrow	$0.72{ }_{6}$	E 6
Nb^{4+}	0.256	0.307	0.808	0.683_{6}	$0.68{ }_{6}$	D (21)
Nb^{5+}	0.198	0.319	0.818	\rightarrow	0.646	E 6
Nd^{2+}	0.920	0.890	1.389	\rightarrow	1.298	E 8
Nd ${ }^{3+}$	0.660	0.705	1.204	1.008_{6}	0.983_{6}	E 8
Ni^{2+}	0.257	0.201	0.700	0.685_{6}	0.690_{6}	D (11) n
$\mathrm{Ni}^{\mathbf{3}+} \mathrm{HS}$	0.147	0.123	0.622	\rightarrow	$0.60{ }_{6}$	E 6
$\mathrm{Ni}^{3+} \mathrm{LS}$	0.095	0.066	0.565	\rightarrow	$0.56{ }_{6}$	E 6
$\mathrm{Ni}^{4+} \mathrm{LS}$	-0.009	0.005	0.504	\rightarrow	$0.48{ }_{6}$	E 6
No^{2+}	0.794	0.768	1.267	\rightarrow	1.16	E 6
Np^{2+}	0.802	0.776	1.275	1.106_{6}	$1.10{ }_{6}$	D (11) n
Np ${ }^{3+}$	0.677	0.707	1.206	\rightarrow	1.016	E 6
Np ${ }^{4+}$	0.472	0.609	: 1.108	0.885_{6}	0.876	D (11) f
Np ${ }^{5+}$	0.341	0.490	0.989	\rightarrow	$0.75{ }_{6}$	E 6
Np^{6+}	0.302	0.538	1.037	\rightarrow	0.72_{6}	E 6
$\mathrm{Np}{ }^{7+}$	0.289	0.627	1.125	\rightarrow	$0.71{ }_{6}$	E 6
O^{2-}	1.328	1.328	0.829	1.3996	$1.40{ }_{6}$	Eq. (11)
Os ${ }^{4+}$	0.185	0.228	0.727	\rightarrow	0.630_{6}	E 6
Os ${ }^{5+}$	0.114	0.218	0.717	\rightarrow	0.575_{6}	E 6
Os ${ }^{6+}$	0.076	0.252	0.751	\rightarrow	0.545_{6}	E 6
Os ${ }^{7+}$	0.050	0.308	0.807	\rightarrow	0.5256	E 6
Os ${ }^{8+}$	0.077	0.272	0.771	\rightarrow	0.39_{4}	E 4
P^{3+}	-0.060	-0.105	0.394	\rightarrow	0.44_{6}	E 6
$\mathrm{P}^{\text {+ }}$	-0.182	-0.157	0.342	\rightarrow	0.174	E 4
Pa^{2+}	0.770	0.742	1.241	1.0816	-	D (11) n
Pa^{3+}	0.716	0.750	1.249	\rightarrow	1.046	E 6
Pa^{4+}	0.515	0.662	1.161	$0.921{ }_{6}$	0.906	D (11) f
Pa^{5+}	0.380	0.537	1.036	0.862_{8}	0.918	E 6
$\mathrm{Pb}^{\mathbf{1 +}}$	0.858	0.850	1.349	1.163_{6}	-	D (11) c
Pb^{2+}	0.704	0.688	1.187	1.042_{6}	1.196	D (11)
Pb^{4+}	0.373	0.444	0.943	\rightarrow	0.775_{6}	E 6
Pd^{1+}	0.463	0.454	0.953	\rightarrow	0.592	E 2
Pd^{2+}	0.483	0.440	0.939	\rightarrow	$0.86{ }_{6}$	E 6
Pd ${ }^{3+}$	0.354	0.351	0.850	\rightarrow	$0.76{ }_{6}$	E 6
Pd ${ }^{4+}$	0.166	0.206	0.705	\rightarrow	0.615_{6}	E 6
Pm^{3+}	0.637	0.679	1.178	0.9896	0.976	E 8
Po^{4+}	0.630	0.805	1.304	$1.088{ }_{8}$	1.088	D (11) f
Po^{6+}	0.237	0.457	0.956	\rightarrow	0.676	E 6

TABLE I-Continued

Ion $^{\boldsymbol{a}}$		Second approach			$r_{k, s}$	Remarks ${ }^{\text {c }}$
	r_{0}	r_{0}	ρ_{0}	$r_{k}{ }^{\text {b }}$		
Pr^{3+}	0.707	0.738	1.237	1.1298	1.126_{8}	D (17) b
Pr^{4+}	0.494	0.635	1.134	0.992_{8}	0.968	D (11) f
Pt^{2+}	0.405	0.358	0.857	\rightarrow	$0.80{ }_{6}$	E 6
Pt^{4+}	0.179	0.221	0.720	\rightarrow	0.626_{6}	E 6
Pt^{5+}	0.108	0.210	0.709	\rightarrow	0.576	E 6
Pu^{2+}	0.768	0.741	1.240	$1.080{ }_{6}$	-	D (11) n
Pu^{3+}	0.665	0.693	1.192	\rightarrow	1.006	E 6
Pu^{4+}	0.449	0.581	1.080	0.8676	$0.86{ }_{6}$	D (11) f
Pu^{5+}	0.328	0.475	0.974	\rightarrow	0.746	E 6
Pu^{6+}	0.289	0.522	1.022	\rightarrow	$0.71{ }_{6}$	E 6
Ra^{2+}	1.193	1.186	1.685	\rightarrow	1.488	E 8
Rb^{1+}	1.380	1.369	1.868	1.622_{8}	1.618	D (11) f
Re^{4+}	0.185	0.228	0.728	\rightarrow	$0.63{ }_{6}$	E 6
$\mathrm{Re}^{\text {S+ }}$	0.121	0.226	0.725	\rightarrow	$0.58{ }_{6}$	E 6
Re^{6+}	0.037	0.203	0.702	0.515_{6}	$0.55{ }_{6}$	D (11)
Re^{7+}	0.065	0.206	0.705	\rightarrow	0.384	E 4
Rh^{3+}	0.230	0.216	0.715	\rightarrow	0.665_{6}	E 6
Rh^{4+}	0.147	0.183	0.682	\rightarrow	$0.60{ }_{6}$	E 6
Rh^{5+}	0.082	0.179	0.678	\rightarrow	$0.55{ }_{6}$	E 6
Ru^{3+}	0.250	0.237	0.736	\rightarrow	$0.68{ }_{6}$	E 6
Ru^{4+}	0.173	0.213	0.712	\rightarrow	0.620_{6}	E 6
Ru^{5+}	0.101	0.202	0.701	\rightarrow	0.565_{6}	E 6
Ru^{7+}	0.066	0.206	0.705	\rightarrow	0.384	E 4
Ru^{8+}	0.042	0.229	0.728	\rightarrow	0.364	E 4
S^{2-}	1.772	1.722	1.273	\rightarrow	$1.84{ }_{6}$	E 6
S^{4+}	-0.076	-0.075	0.424	0.426_{6}	$0.37{ }_{6}$	D (14) m
S^{6+}	-0.241	-0.189	0.310	\rightarrow	$0.12{ }_{4}$	E 4
Sb^{3+}	0.354	0.351	0.850	\rightarrow	$0.76{ }_{6}$	E 6
Sb^{5+}	0.147	0.257	0.756	\rightarrow	$0.60{ }_{6}$	E 6
Sc^{3+}	0.326	0.321	0.820	$0.738{ }_{6}$	0.745_{6}	D (16) b
Se^{2-}	1.912	1.912	1.413	\rightarrow	$1.98{ }_{6}$	E 6
Se^{4+}	0.017	0.035	0.534	\rightarrow	$0.50{ }_{6}$	E 6
Se^{6+}	-0.052	0.026	0.525	\rightarrow	$0.28{ }_{4}$	E 4
Si^{4+}	-0.078	-0.076	0.423	0.2584	0.26_{4}	D (11) q
Sm^{2+}	0.788	0.761	1.260	1.206_{8}	1.278	D (11) n
Sm^{3+}	0.610	0.633	1.132	1.066_{8}	1.079_{8}	E 6
Sn^{2+}	0.819	0.781	1.280	\rightarrow	1.22_{8}	E 8
Sn^{4+}	0.264	0.318	0.817	0.690_{6}	0.690_{6}	D (11) r
Sr^{2+}	0.899	0.878	1.377	1.282_{8}	$1.26{ }_{8}$	D (11) n
Ta^{2+}	0.428	0.380	0.879	0.816_{6}	-	D (11) n
Ta^{3+}	0.302	0.294	0.793	\rightarrow	$0.72{ }_{6}$	E 6
Ta^{4+}	0.250	0.302	0.801	\rightarrow	$0.68{ }_{6}$	E 6
Ta^{5+}	0.130	0.305	0.804	$0.631{ }_{6}$	$0.64{ }_{6}$	E 8
Tb^{3+}	0.565	0.584	1.083	1.036_{8}	1.040_{8}	E 6
Tb ${ }^{+}$	0.339	0.444	0.943	0.774_{6}	$0.76{ }_{6}$	D (11) f
Tc ${ }^{4+}$	0.205	0.250	0.749	\rightarrow	0.645_{6}	E 6
Tc ${ }^{5+}$	0.147	0.257	0.756	\rightarrow	$0.60{ }_{6}$	E 6
Tc ${ }^{++}$	0.054	0.191	0.692	\rightarrow	0.374	E 4
Te^{2-}	2.142	2.142	1.643	\rightarrow	$2.21{ }_{6}$	E 6

TABLE I-Continued

Ion ${ }^{a}$		Second approach			$r_{k, \mathrm{~S}}$	Remarks ${ }^{\text {c }}$
	r_{0}	r_{0}	ρ_{0}	$r_{k}{ }^{\text {b }}$		
Te ${ }^{4+}$	0.626	0.734	1.233	\rightarrow	0.976	E 6
Te ${ }^{6+}$	0.095	0.277	0.776	\rightarrow	$0.56{ }_{6}$	E 6
Th ${ }^{\text {+ }}$	0.575	0.737	1.236	1.0899	1.099	D (11) f
Ti^{2+}	0.483	0.440	0.939	\rightarrow	$0.86{ }_{6}$	E 6
Ti ${ }^{+}$	0.234	0.220	0.719	$0.667{ }_{6}$	0.670_{6}	D (11) k
Ti^{4+}	0.140	0.176	0.675	0.594_{6}	0.605_{6}	D (11) r
Tl^{1+}	1.312	1.292	1.791	1.570_{8}	1.598	E 6
T1 ${ }^{+}$	0.516	0.529	1.028	0.766_{4}	0.754_{4}	E 6
Tm^{2+}	0.703	0.672	1.171	\rightarrow	1.036	E 6
Tm^{3+}	0.512	0.525	1.024	0.882 ${ }_{6}$	0.880_{6}	D (16) b
U^{2+}	0.744	0.715	1.214	1.0616	-	D (11) n
$\mathrm{U}^{\mathbf{3}+}$	0.697	0.729	1.228		1.025_{6}	E 6
\mathbf{U}^{4+}	0.494	0.635	1.135	0.9928	$1.00{ }_{8}$	D (11) f
U^{5+}	0.370	0.585	1.084	0.810_{6}	$0.76{ }_{6}$	E 7
U^{6+}	0.315	0.548	1.047	\rightarrow	$0.73{ }_{6}$	E 6
V^{2+}	0.393	0.344	0.843	\rightarrow	0.796	E 6
V^{3+}	0.185	0.166	0.665	0.630_{6}	0.640_{6}	D (11) k
V^{4+}	0.096	0.126	0.625	$0.561{ }_{6}$	$0.58{ }_{6}$	D (11) r
$\mathrm{V}^{\text {S+ }}$	-0.009	0.047	0.546	0.326_{4}	0.355_{4}	D (22)
W^{4+}	0.224	0.273	0.772	\rightarrow	$0.66{ }_{6}$	E 6
$\mathbf{W}^{\text {S+ }}$	0.173	0.288	0.787	\rightarrow	0.62_{6}	E 6
W^{6+}	0.065	0.214	0.713	0.419_{4}	$0.42{ }_{4}$	D (23)
Xe^{8+}	-0.009	0.327	0.826	0.429_{4}	$0.40{ }_{4}$	E 6
Y^{2+}	0.705	0.674	1.173	1.031_{6}	-	D (11) n
Y^{3+}	0.523	0.538	1.037	0.890_{6}	0.900_{6}	D (17) b
$\mathbf{Y b}^{\mathbf{2 +}}$	0.690	0.659	1.158	1.141_{8}	1.148	E 6
Yb^{3+}	0.502	0.512	1.011	0.872_{6}	$0.868{ }_{6}$	D (17) b
Zn^{2+}	0.328	0.297	0.796	0.755_{6}	0.746	D (24)
Zr^{2+}	0.550	0.510	1.009	0.911_{6}	-	D (11) n
Zr^{4+}	0.245	0.328	0.827	0.6976	0.72_{6}	D (11) f

Note. All radii in Ångstrom.
${ }^{a}$ HS and LS means high spin and low spin, respectively.
${ }^{b}$ Lower index after r_{k} or $r_{k, S}$ value indicates the coordination. Arrow means that r_{0} was estimated from $r_{k, S}$ given in the next column; therefore r_{k} is the same as $r_{k, \mathrm{~s}}$.
${ }^{c} \mathrm{D}$ means that r_{0} was determined using all requirements of the assumed standard state. It is followed by a reference to the souce of the structural data and by a letter indicating the type of structure; b-bixbyite, ccuprite, f -flourite or autifluorite, k -corundum, m -molecule, $\mathrm{n}-\mathrm{NaCl}$ type, q-quartz, r -rutile. E means that r_{0} was estimated from $r_{k, S}$; it is followed by a number k corresponding to $r_{k, S}$ used.
ciprocal of the bond length (reduced by certain value and thus converted into effective bond length) which is exactly to be expected in view of the linear $E-s$ relation (cf. Ref. (7) and Eq. (7)). This leads also to a
new model of chemical bonding in crystals which will be discussed below.

(III) Numerical Data

In view of the comment made at the end
of the Introduction simple oxides $\left(\mathrm{Li}_{2} \mathrm{O}\right.$, $\mathrm{Na}_{2} \mathrm{O} . . \mathrm{MgO}, \mathrm{CaO} \ldots \mathrm{Al}_{2} \mathrm{O}_{3} \ldots \mathrm{VO}_{2}$. . $\mathrm{V}_{2} \mathrm{O}_{5}$, etc.) at room temperature and at normal pressure were chosen as standard state for the respective ions. In the case of polymorphism the most stable form was usually used. Sometimes there are doubts, however, as to which polymorph is the most stable. On the other hand the crystallographic data are usually more precise for crystals of the highest symmetry, which are not necessarily the most stable. Therefore the choice of polymorph was sometimes done arbitrarily and the source of structural data was given in each case. It has been assumed that in the standard structures Eq. (2) is exactly fulfilled. Thus r_{0} for each considered cation was determined by resolving Eq. (2) combined with Eq. (21) and by using the values of all bond lengths around cation in its standard structure. If the structure contained the cations in nonequivalent positions, all of them were of course taken into account. The fitted r_{0} parameters are listed in Table I.

The procedure described above (including the choice of standard state and the way of calculations) could be used for about 35% of the considered ions marked with the letter D (= determined) in the last column of Table I. Due to various reasons, as, e.g., the lack of precise structural data or doubts concerning stoichiometry, r_{0} values for the remaining ions were estimated using Eq. (14) and the most reliable $r_{k, S}$ determined by Shannon. The latter procedure is justified by the fact that $r_{k, \mathrm{~s}}$ and r_{k} from Eq. (14) are practically the same (cf. Fig. 3 and the respective comment in the text). Ions for which r_{0} was estimated are marked in the last column of Table I with the letter E (= estimated) followed by number k corresponding to $r_{k, \mathrm{~S}}$ used. The r_{0}^{\prime} values for O^{2-} and F^{1-} result from Eqs. (11) and (12), respectively. As for other anions their r_{0}^{\prime} values were estimated by using Eq. (11) and a
$=0.0114$ (an average of a for O^{2-} and F^{1-}). For the reader's convenience all parameters useful in $r_{k}-k$ and $s-R$ calculations are summarized in Table II. The proposed way of calculations is so simple that Table I may be easily and systematically completed and corrected by using the emerging structural data.
We propose to call r_{0} values listed in Table I as standard radii of free ions and r_{k} values obtained from r_{0} with Eq. (14) standard ionic radii at coordination k.

It seems useful to mention here that Ta ble I also contains r_{0} values resulting from the second approach at $s-R$ relationship. They are obtained with an analogous procedure, using Eqs. (34) and (35) instead of (21) and Eq. (36) instead of (14). For easy comparison of the present and the earlier data r_{k} calculated from r_{0} and $r_{k, \mathrm{~s}}$ are also included into Table I. To limit the size of Table I comparison of r_{k} and $r_{k, \mathrm{~s}}$ was done only in terms of the second approach which is considered as the final one. But, r_{k} are nearly the same in both approaches and close to $r_{k, \mathbf{s}}$.

TABLE II
Parameters for $r_{k}-k$ and $s-R$ Calculations

Parameter	First approach	Second approach
a_{0} or d_{0}	$a_{0}=0.0811$	$d_{0}=A-B z$ b
	0.0379	$b=0.1177-0.0081 z$
		$=0.0347+0.0050 z$
$r_{0}^{\prime}\left(\mathrm{O}^{2-}\right)$	1.328	1.328
$a_{0}^{\prime}\left(\mathrm{O}^{2-}\right)$	0.0118	0.0118
$r_{0}^{\prime}\left(\mathrm{F}^{1-}\right)$	1.265	1.265
$a_{0}^{\prime}\left(\mathrm{F}^{1-}\right)$	0.0110	0.0110
a_{0}^{\prime} assumed		
\quad for other		
anions $h=-r_{0}\left(\mathrm{H}^{1+}\right)$	0.0114	0.0114

Electrostatic Hover Model of Crystal Structure

From Eqs. (17), (20), and (21) we see that bond strength is proportional to the reciprocal of the bond length ${ }^{2}$ reduced by $R_{0}=r_{0}+$ r_{0}^{\prime}. The difference

$$
\begin{equation*}
L=R-R_{0} \tag{22}
\end{equation*}
$$

may be considered as the effective bond length. On the one hand, this result is consistent with the linear relation between bond strength and bond energy suggested in (7), namely:

$$
\begin{equation*}
E \sim s \sim \frac{\text { const }}{L} \tag{23}
\end{equation*}
$$

On the other hand, this leads to a new model of crystal structure which may be called as an electrostatic hover model (cf. Fig. 4). In this model ions are of constant size (r_{0} and r_{0}^{\prime}). They do not touch but they are fixed in the space at distances L with electrostatic forces. The ions behave as if an effective charge was localized at both ends of L. This charge may be considered as excess negative charge of anion and an electron hole on cation, both localized on orbitals and not at the centers of the ions as usually assumed.

The effective bond length L is marked simplistically in Fig. 4 as a spring. The shorter L, the stronger the bond; the longer L the weaker the bond. In this model r_{k} values lose their physical sense. It is rather L_{k} that should be correlated with k. But mathematically r_{k} values may still be used to determine L at given coordination or at given bond strength. As results from Fig. 3 and

[^1]

Fig. 4. Comparison of the electrostatic hover model of crystal structure with traditional model of close packing (details are discussed in text).

Eqs. (10) and (11) the most typical values of $L_{k}=a k+a^{\prime} k^{\prime}$ vary between 0.3 and $0.5 \AA$.

The positions of ions in the space must result from the equilibrium between attractive and repulsive forces. The latter may be thought to result from the interactions between the ions of the same charge. This problem shall require further, more thorough considerations.

Obviously one can still consider a crystal as built of close-packed ions of radii r_{k} and $r_{k^{\prime}}^{\prime}$. But, if so, one is forced to accept that (with the exception of some highly symmetrical structures) ions are no longer spherical, but their size depends on the angle and varies (adapts) on passing from one structure to the other ('barbapapa behavior'). An example is given in Fig. 5a where the shape of a cation resembles a deformed rugby ball. If we change the configuration of the same ions, the cation is further deformed (Fig. 5b). One has also to accept

Fig. 5. Examples of close-packed structure in which ions adapt their size and shape to the strength of bonding (indicated by numbers). Central cation resembles a deformed rugby ball (a) or an irregular lens (b). Very small deformations of anions (comparable with the width of line) are neglected. Figure is based on r_{k}, r_{k}^{\prime}, and s for $\mathrm{Ti}^{4+}-\mathrm{O}^{2-}$ bond.
that the weaker the bond, the larger the ion, but if the bond is entirely broken the ion becomes small again. The traditional description of crystal structure contains the premise that an increase of r_{k} with k is the intrinsic property of ions. But in terms of the electrostatic hover model, it is clear that with increasing k the binding ability of cation (valence, charge) is divided among increasing number of neighboring anions. Therefore each bond must become weaker and longer. It seems that the latter formulation is much more logical. Moreover, in terms of the electrostatic hover model the ions in a crystal have a space to vibrate and to diffuse. This was entirely forgotten when the model of close-packed ions was being formulated.

Second Approach to the s-R Relationship

As mentioned in the preceding paragraph r_{k} values lose their physical sense in terms of the electrostatic hover model of crystal structure. It is rather the effective bond length

$$
\begin{equation*}
L=a k+a^{\prime} k^{\prime} \tag{24}
\end{equation*}
$$

that should be correlated with coordination or bond strength. To take this fact into account we can repeat the calculations assuming that the ionic radius of oxygen anion is constant ($r_{0}^{\prime}=1.328$) and ascribing formally $a^{\prime} k^{\prime}$ to the cation instead of the anion. We have now

$$
\begin{equation*}
r_{k}^{*}=r_{k}+a^{\prime} k^{\prime}=r_{0}+a k+a^{\prime} k^{\prime} \tag{25}
\end{equation*}
$$

and in review of Eq. (15):

$$
\begin{equation*}
r_{k}^{*}=r_{k}+a^{\prime} \frac{2 k}{z}=r_{0}+a k+a^{\prime} \frac{2 k}{z} \tag{26}
\end{equation*}
$$

or

$$
\begin{equation*}
r_{k}^{*}=r_{0}+d k \tag{27}
\end{equation*}
$$

where

$$
\begin{equation*}
d=a+\frac{2 a^{\prime}}{z} \tag{28}
\end{equation*}
$$

Values of d and r_{0} for the same 58 cations as considered in the first approach, were

Fig. 6. Dependence between parameters d and r_{0} from Eq. (27) for ions of various valences (second approach). Dotted lines are determined with the least-squares method. Solid lines are obtained after final smoothing (cf. text and Fig. 7). Due to overlapping the points for trivalent ions of $\mathrm{Er}, \mathrm{Sm}, \mathrm{Tb}, \mathrm{Y}$, and Yb (at about $r_{0}=0.55, d=0.065$) are omitted. Triangles represent penta- and hexavalent ions.
determined with Eq. (27). As seen in Fig. 6 in analogy to Eq. (10), d is linearly related to r_{0} :

$$
\begin{equation*}
d=d_{0}-b r_{0} \tag{29}
\end{equation*}
$$

but ions of z equal to $1,2,3$, and 4 trace four different straight lines of d_{0} and b dependent on z. The points fit much better the $d-r_{0}$ lines (Fig. 6) than $a-r_{0}$ lines (Fig. 3), the correlation coefficients being 0.988 , $0.957,0.950$, and 0.917 for z changing from 1 to 4 , respectively, while c was only 0.889 for the $a-r_{0}$ line. As for trivalent ions the large number of points is grouped at about $r_{0}=0.55$ and $d=0.065$. To equalize the statistical weight they were replaced with one average point. Without it $c=0.895$. The few points corresponding to penta- and hexavalent ions are irregularly dispersed. The dispersion may be ascribed to an inaccuracy in determination of their r_{k}, resulting, as already mentioned, from distortion of polyhedra in which these ions usually appear (10). It has been therefore assumed that d_{0} and b should regularly depend on z. In Fig. 7, $d-z$ relationship are drawn at six chosen r_{0} values: $0,0.25,0.50,0.75,1.00$, and 1.25 . They are linear:

$$
\begin{equation*}
d=\alpha-\beta z \tag{30}
\end{equation*}
$$

The parameters α and β at each chosen r_{0} values were determined with the leastsquares method and smoothed d values at the six above-mentioned r_{0} levels were calculated with Eq. (3) for valences ranging from +1 to +8 . On this basis smoothed $d-r_{0}$ lines (not illustrated) were again determined with the least-squares method. It was found that all eight smoothed $d-r_{0}$ lines cross one another at $r_{0}=-1.63$ and $d=$ 0.174 with accuracy better than 0.5%. This may be considered as the common point I. Distances between these lines at $r_{0}=1.00$ are exactly the same and equal to 0.0131 , with $d=0.0699$ for monovalent ions. At r_{0} $=1.00$ we have thus eight points I_{z} of the ordinates dependent on z. The final smooth-

Fig. 7. Dependences of d on z at various r_{0} (sections constructed on the basis of Fig. 6).
ing consisted in assuming that the $d-r_{0}$ lines for various z pass exactly through the above-indicated points I and Π_{z}. This gives

$$
\begin{equation*}
d_{0}=A-B z \tag{31}
\end{equation*}
$$

and

$$
\begin{equation*}
b=C+D z \tag{32}
\end{equation*}
$$

with $A=0.1177, B=0.0081, C=0.0347, D$ $=0.0050$ (cf. Table II). The final $d-r_{0}$ lines are shown in Fig. 6 (solid lines). The second approach presented above results in modification of the $s-R$ relationship. Namely, in terms of this approach the bond length R may be expressed as

$$
\begin{equation*}
R=r_{k}^{*}+r_{0}^{\prime} . \tag{33}
\end{equation*}
$$

Making use of Eqs. (27), (29), and (10) we arrive finally at

$$
\begin{equation*}
s=\frac{z d_{0}-z b r_{0}}{R-r_{0}-r_{0}^{\prime}}=\frac{d z}{R-R_{0}}, \tag{34}
\end{equation*}
$$

where

$$
\begin{align*}
d=0.1177- & 0.0081 z \\
& -0.0347 r_{0}-0.0050 z r_{0} \tag{35}
\end{align*}
$$

In terms of the second approach the standard radii r_{0} (listed in Table I and
marked with D) were determined in a way analogous to the first approach, i.e., using the proposed standard state and Eqs. (34) and (35) instead of (21). For the remaining cations r_{0} values were estimated (E) using the most reliable $r_{k, \mathrm{~S}}$ (indicated in Table I) and the equation

$$
\begin{equation*}
r_{0}=r_{k}+\frac{2 a^{\prime} k}{z}-d k \tag{36}
\end{equation*}
$$

This equation is derived from Eqs. (26) and (27). The standard radii r_{0}^{\prime} for anions are the same as in the first approach.

Due to the better accuracy (cf. Figs. 3 and 6) and better rationalization in terms of the electrostatic hover model the second approach is thought to be preferable. Therefore the final conclusion of the discussion performed in this paper, concerning the $s-R-r-k$ problem is thought to be expressed by Eqs. (27), (36), and (34) with values of r_{0} and all other necessary parameters gathered in Tables I and II under "second approach."

Evaluation of the New Set of the Standard Ionic Radii. New Scale of the Absolute Ionic Radii

The effective ionic radii of Shannon (10) were determined according to the procedure which essentially consisted in taking an average of a given cation-anion bond lengths from a large number of structures, subtracting the assumed anion radius ($r_{6}^{\prime}=$ $1.40 \AA$ for O^{2-}) and adjusting the obtained cation radius to be consistent with plots of radii vs unit cell volume, radii vs coordination, radii vs oxidation state, and with empirical bond-length-bond-strength relationships.

The new set of the standard r_{0} and r_{k} radii proposed in this paper results from: (i) the newly formulated linear $r_{\mathrm{k}}-k$ dependence, (ii) the newly formulated $s-R$ dependence (in both of them r_{0} appears as parameter),
and (iii) the normalization in terms of the proposed standard state.

As both ways of calculations are different, the effective ionic radii $r_{k, S}$ and the standard ionic radii r_{k} need not necessarily be the same though they should be similar. In fact for the majority of ions the differences between $r_{k, \mathrm{~s}}$ and r_{k} are smaller than $0.03 \AA$. There are only few exceptions $\left(\mathrm{Ag}^{1+}, \mathrm{Cs}^{1+}, \mathrm{K}^{1+}, \mathrm{Mn}^{3+} \mathrm{HS}, \mathrm{Mo}^{6+}, \mathrm{Na}^{1+}\right.$, $\mathrm{Pb}^{2+}, \mathrm{S}^{4+}$) where these differences exceed $0.05 \AA$. As shown in Fig. 8 the plots of r_{0} vs oxidation state for ions of the noble gas shell follow the expected regular dependences. As it may be easily deduced from Table I also the plots of r_{0} vs oxidation state for a given element are usually regular, r_{0} diminishing with increasing z. Some ions $\left(\mathrm{Fe}^{4+}, \mathrm{Mn}^{6+}, \mathrm{N}^{3+}, \mathrm{Np}^{6+}, \mathrm{Np}^{7+}, \mathrm{Os}^{6+}, \mathrm{Os}^{7+}\right.$, $\mathrm{Os}^{8+}, \mathrm{Pa}^{3+}, \mathrm{Pu}^{6+}, \mathrm{Re}^{7+}, \mathrm{Ru}^{8+}, \mathrm{Ta}^{4+}, \mathrm{Ta}^{5+}$, $\mathrm{Tc}^{5+}, \mathrm{U}^{3+}, \mathrm{W}^{5+}$) lie slightly off regular curves, while the niobium ions form an entirely irrational set. As these are mostly rather exotic ions the discrepancies can be ascribed to an experimental error. The r_{0} values for these ions should be rather read from the respective $r_{0}-z$ curves by interpolation or extrapolation. As this procedure involves some arbitrariness, the author's intention is to leave this problem open.

It seems interesting to note that some of our standard ionic radii were determined by using structural data for molecules in which bonding is undoubtly covalent (though polarized). We may quote here $\mathrm{C}^{4+}, \mathrm{H}^{1+}, \mathrm{S}^{4+}$ for which r_{k} were found to be -0.078_{3}, $-0.393_{1}, 0.424_{6}$, and $r_{k, \mathrm{~S}}$ are $-0.08_{3},-0.38_{1}$, and 0.37_{6}, respectively. Thus, in spite of this unusual way of determination of ionic radius, the agreement between r_{k} and $r_{k, \mathrm{~S}}$ is excellent for C^{4+} and H^{1+} and satisfactory for S^{4+}. This observation combined with the fact that the concept of the electrostatic bond strength can be also used for crystals with primarily covalent bonds (3) proves again that some aspects of ionic and covalent bonding are highly analogous.

Fig. 8. Standard radii r_{0} and absolute radii ρ_{0} of some ions of the noble gas shell as function of the oxidation state.

There are 20 ions for which standard r_{0} radii were found to be negative. The problem of the negative ionic radii has already been discussed in detail by Shannon and Prewitt (9) who also found the negative values for $\mathrm{H}^{1+}(k=1), \mathrm{C}^{4+}(k=3)$, and $\mathrm{N}^{5+}(k$ $=3$). These authors note that there is intrinsically no objection to the negative radii as the cations may be thought to penetrate the electronic cloud of a highly deformed oxygen ion. It seems that this concept could be acceptable for H^{1+} at $k=1$. But negative radii for C^{4+} and N^{5+} at $k=3$ would force us to accept that electronic clouds of three adjacent anions are strongly overlapped. The more so a physical sense can be hardly attributed to the negative r_{0} radii of so heavy and complex ions as, e.g., Fe^{6+} or $\mathbf{M n}^{6+}$. There are also numerous ions for which r_{0} or $r_{k, s}$ was found to be positive but irrationally small. The alternative way to resolve this problem could consist in ascribing much smaller values to anionic radii (9).

In fact there is no unequivocal manner of dividing a bond length among anion and cation and thus the question of absolute radii is still not resolved.

In view of the present work the following solution may be suggested. The r_{0} value for H^{1+} (i.e., for a proton) was found to be

$$
\begin{equation*}
r_{0}\left(\mathrm{H}^{1+}\right)=-h=-0.499 \AA . \tag{37}
\end{equation*}
$$

The absolute size of proton is of the order of $10^{-5} \AA$, i.e., much smaller than the accuracy of the determination of ionic radii. Thus it seems natural to take the absolute radius, ρ_{0}, of H^{+}as 0.00 . Consequently ρ_{0} for all cations may be suggested to be

$$
\begin{equation*}
\rho_{0}=r_{0}+0.499 \tag{38}
\end{equation*}
$$

and for anions

$$
\begin{equation*}
\rho_{0}^{\prime}=r_{0}^{\prime}-0.499 \tag{39}
\end{equation*}
$$

In particular, for oxygen anion ρ_{0} is 0.829 .
Taking into account that nonpolar covalent radius of oxygen has been estimated to
be 0.73 (25) and that O^{2-} formation ($\mathrm{O}+2 e$ $=\mathrm{O}^{2-}$) consists in location of two electrons on the same shell which is already partly occupied in oxygen atom, the above indicated value of ρ_{0}^{\prime} seems to be quite reasonable. For convenience ρ_{0} and ρ_{0}^{\prime} values are also listed in Table I.

Assuming this new scale of the absolute ionic radii results in having positive radii for all the ions of all the elements (with exception of N^{3+}, which may be ascribed to an experimental error). Simultaneously the $\rho_{0}-z$ plots for isoelectronic ions of noble gas shell (Fig. 8) become more flat which seems to be reasonable as an increase of nucleus charge at the same electronic shell should not result in so strong sigmoid jump between monovalent anions and low-valent cations as observed in the $r_{0}-z$ plots. ${ }^{3}$ There is only one discrepancy consisting in the fact that ρ_{0} values for monovalent cations as $\mathrm{Na}^{1+}, \mathrm{K}^{1+}, \mathrm{Rb}^{1+}$, and Cs^{1+} are larger than those for $\mathrm{F}^{1^{-}}, \mathrm{Cl}^{1-}, \mathrm{Br}^{1^{-}}$, and I^{1-}, respectively. An explanation of this phenomenon cannot be offered at present.

It seems useful to note that in view of Eqs. (18), (35), (38), and (39):

$$
\begin{equation*}
R_{0}=r_{0}+r_{0}^{\prime}=\rho_{0}+\rho_{0}^{\prime}=\mathrm{P}_{0} \tag{40}
\end{equation*}
$$

and

$$
\begin{align*}
d & =0.1177-0.0081 z-0.0347\left(\rho_{0}-h\right) \\
& -0.0050 z\left(\rho_{0}-h\right)=0.1350-0.0056 z \\
& -0.0347 \rho_{0}-0.0050 z \rho_{0} \tag{41}
\end{align*}
$$

Thus Eq. (34) may be transformed to

[^2]\[

$$
\begin{equation*}
s=\frac{d z}{R-\mathrm{P}_{0}} \tag{42}
\end{equation*}
$$

\]

with d expressed by Eq. (41). As is evident, bond strength calculated with Eq. (34) or (42) is numerically the same.

If useful, also ρ_{k} may be defined by combining Eqs. (36) and (38) as

$$
\begin{equation*}
\rho_{k}=\rho_{0}-\frac{2 a^{\prime} k}{z}+d k \tag{43}
\end{equation*}
$$

Evaluation of the Bond Strength Data

Introduction of the standard state for bond strength results in a number of consequences. First of all, the bond strength sums around cations in simple oxides at standard state are-from definition-exactly equal to the nominal cation valences. However, if the structure of a simple oxide contains m cations in crystallographically nonequivalent positions, the bond strength sum around all of them amounts to $m z$, while Σs around each of them is not necessarily equal to z. This means that nonequivalent cations (as well as nonequivalent anions) are not necessarily bonded with the same strength (energy), though the expected Σs should not be very different from z (conclusion I). This is analogous to organic and inorganic molecules where the heat of dissociation of $\mathrm{C}-\mathrm{O}, \mathrm{C}-\mathrm{H}$, or $\mathrm{O}-\mathrm{H}$ bonds varies on passing from the molecule of one compound to another. The more so, the bond strength sums around cations and anions in various complex oxides or oxysalts may, and even should be differentiated. As for the thermodynamically stable crystals the bond strength sums $(\Sigma s)_{\text {cat }}$ around all chemically and crystallographically nonequivalent cations should be higher than $(\Sigma s)_{\text {cat }}^{o x}$ expressing the analogous sums in simple oxides taken in an equivalent number. In other words, in view of the assumed standard state, they should be higher than the respective sums of the nom-

Fig. 9. Bond strength of $\mathrm{Mo}-\mathrm{O}$ and $\mathrm{V}-\mathrm{O}$ bonds in MoO_{3} and $\mathrm{V}_{2} \mathrm{O}_{5}$ calculated from power-type equation (P); coulombic-type equation, first approach (F), and coulombic-type equation, second approach (S) (Eqs. (4), (21), and (34), respectively).
inal valences of cations (conclusion II). ${ }^{4}$
In view of the above comments and the brief outline of the bond-strength concepts given in the Introduction it is impossible to decide quantitatively whether s values calculated with Eq. (34) are better or worse than those resulting from Eqs. (4), (5), or (21). One can say, however that both Eq. (21) and (34) are logical consequences of the well argued linear $r_{k}-k$ and $a-r_{0}$ or $d-r_{0}$ relationships and that-as far as possiblethey are rationalized in terms of the electrostatic hover model of crystal structure. Due to both of them the values of ionic radii and the parameters for calculating cation-oxygen bond strength have been made consistent. The linear relationships for Eq. (34) are

[^3]more accurate than those leading to Eq. (21). Another important argument ($E-s-R$ relationship) will be offered in a forthcoming paper (8). These facts speak in favor of Eq. (34), which seems to be conceptually better.

It seems of interest to verify the abovementioned conclusions I and II. The respective examples are shown in Fig. 9 and in Tables III and IV. Figure 9 shows the bond strength values for $\mathrm{Mo}-\mathrm{O}$ and $\mathrm{V}-\mathrm{O}$ bonds in MoO_{3} and $\mathrm{V}_{2} \mathrm{O}_{5}$ resulting from the power-type equation (P, Eq. (4)), and from the equations of the first (F, Eq. (21)) and the second (S, Eq. (34)) approaches. In Table III, Σs values around cations and anions in $\mathrm{MoO}_{3}, \mathrm{~V}_{2} \mathrm{O}_{5}$, and in several oxysalts are compared. Table IV contains the bond strength sums $(\Sigma s)_{\text {cat }}$ around all nonequivalent cations in a number of structures compared with ($\Sigma s)_{\text {cat }}^{\mathrm{ox}}$ expressing, as already mentioned, the analogous sums in simple oxides taken in an equivalent quantity. As seen from Fig. 9 and Table III the values of

TABLE III
Bond Strength Sums Around Cations and Anions in Some Crystalline Structures ${ }^{a}$

[^4]s and Σs around cations and anions resulting from P, F, and S versions are only slightly differentiated and Σs are close to z or z^{\prime}, respectively. This remains in agree-
ment with conclusion I. This is not so with conclusion II. As seen from Table IV the differences $\Delta=(\Sigma s)_{\text {cat }}-(\Sigma s)_{\text {cat }}^{0 \mathrm{x}}$ which should be positive are in fact (in both S and

TABLE IV
Bond Strength Sums ($\Sigma s)_{\text {cat }}$ Around All Nonequivalent Cations in Some Oxide Structures Compared with Analogous Sums ($\Sigma s_{\text {at }}^{\text {ox }}$ in Simple Oxides

Compound	S			P			Source of structure data
	$(\Sigma s)_{\text {cat }}$	$(\Sigma s)_{\text {eat }}^{\text {ox }}$	Δ	$(\Sigma s)_{\text {cat }}$	$(\Sigma s)_{\text {ata }}^{\text {ox }}$	Δ	
$\mathrm{MgAl}_{2} \mathrm{O}_{4}$	7.84	8.00	-0.16	7.87	8.10	-0.23	(11)
$\mathrm{ZnAl}_{2} \mathrm{O}_{4}$	8.02	8.00	+0.02	7.96	8.02	-0.06	(11)
$\mathrm{CoAl}_{2} \mathrm{O}_{4}$	8.04	8.00	$+0.04$	7.85	7.98	-0.13	(11)
$\mathrm{FeAl}_{2} \mathrm{O}_{4}$	7.78	8.00	-0.22	8.06	8.20	-0.14	(11)
$\mathrm{MgCr}_{2} \mathrm{O}_{4}$	7.93	8.00	-0.07	7.47	7.74	-0.27	(11)
$\mathrm{MgV}_{2} \mathrm{O}_{6}$	11.66	12.00	-0.34	12.06	12.18	-0.12	(27)
$\mathrm{CdV}_{2} \mathrm{O}_{6}$	11.88	12.00	-0.12	12.15	11.98	+0.17	(28)
$\mathrm{CuV}_{2} \mathrm{O}_{6}$	11.94	12.00	-0.06	12.26	12.29	-0.03	(29)
CuWO_{4}	7.90	8.00	-0.10	8.01	8.41	-0.40	(30)
CoMoO_{4}	7.89	8.00	-0.11	7.80	7.76	+0.04	(31)
CuMoO_{4}	7.51	8.00	-0.49	8.18	7.99	+0.17	(32)

Note. $\Delta=(\Sigma s)_{\text {cat }}-(\Sigma s)_{c a t}^{o x}, S —$ from Eq. (34) of the second approach, P—from power-type Eq. (4).

P versions) sometimes positive and sometimes (more frequently) negative. This disagreement may result to some extent from inaccuracy of the structural data. Let us mention that an error of $0.01 \AA$ in the length of very short V-O or Mo-O bond may result in changing s by 0.05 to 0.1 vu (cf. Fig. 9). On the other hand, s values for, e.g., $\mathrm{MgAl}_{2} \mathrm{O}_{4}$ were calculated using u $=0.387$ (the crystallographic parameter u indicates the positions of oxygen in spinel structure). It may be easily verified that if u ≤ 0.381 or $u \geq 0.396 \Delta$ would be positive. The latter value remains within the limit of error of the older determination (33) where u was found to be 0.390 ± 0.006. However, at $u=0.396$ the bond strength sums around cations are rather far from their $z(1.50$ and 3.26 for Mg^{2+} and Al^{3+}, respectively).

The above considerations cannot cover the fact that the $s-R$ dependences of P, F, and S type are still empirical equations and thus their precision depends on the used empirical data and on simplifications introduced in the mathematical procedure (e.g., linear relationships). Therefore numerical coefficients in Eq. (34) proposed in this paper shall probably require further refinement. Some new experimental data would be highly desirable, especially those necessary to draw $d-r_{0}$ lines for high-valent cations and to verify our smoothing procedure.

Conclusions

The main findings of this paper are gathered in the Abstract. The main aim of the paper was to construct the system of equations linking logically the values of bond strength, bond length, ionic radii, and coordination number. With these equations the numerical values of s and r_{0} or r_{k} form mutually consistent sets which may find application in the analysis of crystal structures. The quality of the present numerical data is approximately the same as of those previ-
ously published, but new meaning is ascribed to the bond strength concept due to the defined standard state. As far as possible the established relationships are rationalized in terms of the introduced electrostatic hover model of crystal structure. A new ρ-scale of the absolute ionic radii is proposed which seems to be more rational than the former. The striking conclusion is that also some properties of covalent bonds may be interpreted as if they were ionic.

There remain some inconsistencies in the picture outlined above which have been indicated in the last two sections. This should inspire further, more profound studies.

References

1. L, Pauling, J. Amer. Chem. Soc. 51, 1010 (1929).
2. I. D. Brown, in 'Structure and Bonding in Crystals" (M. O'Keeffe and A. Navrotsky, Eds.), Vol. 2, Academic Press, New York (1981).
3. I. D. Brown and R. D. Shannon, Acta Crystallogr. Sect. A 29, 266 (1973).
4. I. D. Brown and K. K. Wu, Acta Crystallogr. Sect. B 32, 1957 (1976).
5. R. Allmann, Monatsh. Chem. 106, 779 (1975).
6. W. H. Zachariasen, J. Less-Common Met. 62, 1 (1978).
7. J. ZióŁkowski, J. Catal. 84, 317 (1983).
8. J. Zıóekowski and L. Dziembaj, J. Solid State Chem. 57, 291 (1985).
9. R. D. Shannon and C. T. Prewitt, Acta Crystallogr. Sect. B 25, 925 (1969).
10. R. D. Shannon, Acta Crystallogr. Sect. A 32, 751 (1976).
11. W. G. Wyckoff, "Crystal Structures," Interscience, New York (1969).
12. S. V. Bergr, Acta Chem. Scand. 7, 611 (1953).
13. D. K. Smith, H. W. Newkirk, and J. S. Kahn, J. Electrochem. Soc. 111, 78 (1964).
14. "CRC Handbook of Chemistry and Physics," 59th ed., CRC Press, West Palm Beach, Florida (1978/79).
15. A. Bystrom and K. A. Wilhelmi, Acta Chim. Scand. 4, 1131 (1950).
16. S. Geller, P. Romo, and J. P. Remeika, Z. Kristallogr. 124, 136 (1967).
17. M. Marezio, Acta Crystallogr. 20, 723 (1966).
18. S. Geller, J. Chem. Phys. 33, 676 (1960).
19. B. G. Brand and A. C. SKapski, Acta Chim. Scand. 21, 661 (1967).
20. L. Kihlborg, Ark. Kemi 21, 357 (1963).
21. B. O. Marinder, Ark. Kemi 19, 435 (1962).
22. H. G. Bachman, F. R. Ahmed, and W. H. Barnes, Z. Kristallogr. 115, 110 (1961).
23. B. O. Loopstra and P. Boldrini, Acta Crystallogr. 21, 158 (1966).
24. S. C. Abrahams and J. L. Bernstein, Acta Crystallogr. Sect. B 25, 1233 (1969).
25. R. T. Sanderson, "Chemical Periodicity," Reinhold, New York (1962).
26. S. Fraga, J. Karwowski, and K. M. S. Saxsena, "Handbook of Atomic Data," Elsevier, Amsterdam/Oxford/New York (1976).
27. H. N. Ng and C. Calvo, Canad. J. Chem. 50, 3619 (1972).
28. C. Calvo and D. Manolescu, Acta Crystallogr. Sect. B 29, 1743 (1973).
29. J. Angenault, Rev. Chim. Miner. 7, 651 (1970).
30. L. Kihlborg and E. Gebert, Acta Crystallogr. Sect. B 26, 1020 (1970).
31. G. W. Smith and J. A. Iberes, Acta Crystallogr. 19, 269 (1965).
32. S. C. Abrahams, J. L. Bernstein, and P. B. Jamieson, J. Chem. Phys. 48, 2619 (1968).
33. T. F. G. Barth and E. Prosnjak, Z. Kristallogr. 82, 352 (1932).

[^0]: ${ }^{1}$ The concept of the spherical ions contains the premise that idealized structures are considered, for which Eqs. (15) and (16) are adequate. In such structures k, k^{\prime}, R, and s change by steps. In particular we deal with a number of corresponding pairs of values (s_{i}, R_{i}). These points, marked in the $s-R$ coordinates, trace a general $s-R$ relationship (with s and R changing fluently), as expressed by Eqs. (17), (20), and (21).

[^1]: ${ }^{2}$ It should be stressed that although a coulombictype $s-R$ relationship was expected by the author before undertaking the present studies, the shape of Eqs. (17), (20), (21), and (23) is not influenced by that preliminary supposition, but it is a logical consequence of the observed $r_{k}-k$ dependence expressed by Eqs. (10) and (14).

[^2]: ${ }^{3}$ Besides the ionic radii determined from crystal structures ($r_{k, \mathrm{~s}}, r_{k}, r_{0}, \rho_{0}$) the "atomic radii" r_{a} are known (26) as they are obtained from quantum-chemical computations (in fact these are also "ionic radii" determined for various z). The $r_{\mathrm{a}}-z$ plots for low-valent cations of noble gas shell are yet more flat than $\rho_{0^{-}}$ z plots. This may be ascribed to the fact that r_{a} concern the ions of charge z while the effective charge of cations in crystal lattices is always smaller than their formal valence z.

[^3]: ${ }^{4}$ Exactly speaking, this is the bond energy sum (around all nonequivalent cations) which should be higher than the analogous sum in simple oxides. If Eq. (7) was valid and coefficients J for various cationoxygen bonds were differentiated, conclusion II would have only an approximate character. The problem will be undertaken again in the forthcoming paper (8).

[^4]: ${ }^{a}$ P-from power-type function (Eq. (4)), F -from coulombic-type function, first approach (Eq. (21)), S-from coulombic-type function, second approach (Eq. (34)). Structural data for $\mathrm{MgV}_{2} \mathrm{O}_{6}, \mathrm{CuV}_{2} \mathrm{O}_{6}, \mathrm{CdV}_{2} \mathrm{O}_{6}, \mathrm{~V}_{2} \mathrm{O}_{5}$, and MoO_{3} taken from (27), (28), (29), (22), and (20), respectively.
 ${ }^{b}$ From definition.

